Learning to Forecast Dynamical Systems from Streaming Data
نویسندگان
چکیده
Kernel analog forecasting (KAF) is a methodology for data-driven, nonparametric of dynamically generated time series data. This approach has rigorous foundation in Koopman operator theory and it produces good forecasts practice, but suffers from the heavy computational costs common to kernel methods. paper proposes streaming algorithm KAF that only requires single pass over training dramatically reduces prediction without sacrificing skill. Computational experiments demonstrate method can successfully forecast several classes dynamical systems (periodic, quasi-periodic, chaotic) both data-scarce data-rich regimes. The overall may have wider interest as new template regression.
منابع مشابه
observational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولjordan c-dynamical systems
in the first chapter we study the necessary background of structure of commutators of operators and show what the commutator of two operators on a separable hilbert space looks like. in the second chapter we study basic property of jb and jb-algebras, jc and jc-algebras. the purpose of this chapter is to describe derivations of reversible jc-algebras in term of derivations of b (h) which are we...
15 صفحه اولArterial travel time forecast with streaming data: A hybrid approach of flow modeling and machine learning
This article presents a hybrid modeling framework for estimating and predicting arterial traffic conditions using streaming GPS probe data. The model is based on a well-established theory of traffic flow through signalized intersections and is combined with a machine learning framework to both learn static parameters of the roadways (such as free flow velocity or traffic signal parameters) as w...
متن کاملAnalyzing Linear Dynamical Systems: From Modeling to Coding and Learning
Encoding time-series with Linear Dynamical Systems (LDSs) leads to rich models with applications ranging from dynamical texture recognition to video segmentation to name a few. In this paper, we propose to represent LDSs with infinite-dimensional subspaces and derive an analytic solution to obtain stable LDSs. We then devise efficient algorithms to perform sparse coding and dictionary learning ...
متن کاملLearning Partially Contracting Dynamical Systems from Demonstrations
An algorithm for learning the dynamics of point-to-point motions from demonstrations using an autonomous nonlinear dynamical system, named contracting dynamical system primitives (CDSP), is presented. The motion dynamics are approximated using a Gaussian mixture model (GMM) and its parameters are learned subject to constraints derived from partial contraction analysis. Systems learned using the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Siam Journal on Applied Dynamical Systems
سال: 2023
ISSN: ['1536-0040']
DOI: https://doi.org/10.1137/21m144983x